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On the basis of van der Waals theory for interfaces we evaluate explicitly the 
small-wavevector behavior of the pair correlation function along an interface. A 
correction to the density profile is also found. The results obtained are in full 
accord with capillary wave theory when wave amplitudes are regarded as small. 
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1. I N T R O D U C T I O N  

The theory of interfaces may  be regarded from two viewpoints. One view- 
point  is the capillary wave theory, tl 31 In this theory one may assume that 
there is a rather abrupt  change from one phase to another  forming an 
intrinsic interface. This interface will move  and is deformed by capillary 
waves that  can be described by hydrodynamics .  These waves are created by 
thermal fluctuations. Due  to this, the density will fluctuate near the inter- 
face, and the fluctuations will produce a region where the average density 
changes gradually. The width of  this region will increase with decreasing 
field of gravity across the interface, and in the limit of  zero gravity the 
resulting width of the interface becomes infinite. 

The other viewpoint is the van der Waals  theory for interfaces. (4/ In 
this theory the interface is regarded as planar,  and in the direction perpen- 
dicular to it the density will change gradual ly f rom one phase to the other. 
The form of the density profile is determined by a mean  field t reatment  of 
the effect of attractive forces. The width of  the density profile is finite, and it 
will stay finite also with zero gravity. 
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From the viewpoint of the physics involved both theories are 
reasonable. The problem is that they describe two different aspects of inter- 
face properties that are not easy to combine by a common theory. 
However, several workers have tried to bridge the gap between the two 
viewpoints. Then mean field models are supplemented by allowing fluc- 
tuations of density around the mean field value. It has been shown that 
thermal fluctuations give rise to behavior that to a certain extent may be 
identified with capillary waves. In this respect Zittartz and later Evans 
studied the Landau-Ginzburg-Wilson model, which is a submodel of van 
der Waals theory. ~5) Renormalization group methods using e-expansion 
have also been applied to this model to study interface properties. (6/ 
Wertheim ~7) made an analysis of the pair correlation function along an 
interface and showed that quite generally it should have the long-range 
behavior that capillary waves have. This was later extended by others. ~2"8) 
Sullivan ~91 considered an expansion in the inverse range of attractive 
interaction, the 7-0rdering, to obtain a perturbation on van der Waals 
theory. The 7-0rdering is well established for uniform fluids. (lm However, it 
diverges in the critical region. This divergence may be tamed by some 
resummation of graphs, and considerable improvement over the van der 
Waals equation of state for the three-dimensional case of a Lennard-Jones 
fluid has been obtainedJ H) The 7-0rdering has also been a foundation for 
the developments by Hcye and Stell in the theory for polar and polarizable 
fluids. 112)'2 Closely related to the 7-0rdering is the work by Andersen, 
Chandler, and Weeks. (~5) 

In our work we want to apply the 7-0rdering to interfaces. In prin- 
ciple, graph expansions are formally the same for uniform and nonuniform 
fluids. The difference is that the latter creates much bigger problems when 
one wants to do more explicit evaluations, since density is no longer a con- 
stant throughout the system. The present work is inspired by computer 
results obtained by Stecki and coworkers. (~6) These results seemed to 
indicate that the short-range part of the direct correlation function at the 
interface is, to a good approximation, as in the bulk phase, using local den- 
sity. In view of this we can proceed as in the bulk phase and establish the 
direct correlation function. From this we evaluate the leading behavior of 
the pair correlation function along the interface. A correction to the van 
der Waals density profile is also found. Our 7-0rdering follows the one used 
by Sullivan. (9~ Thus, some of our results overlap with those of Ref. 9. 
However, we make a more explicit computation of various quantities on 
the basis of the van der Waals theory, and a more detailed comparison 
with capillary wave theory is performed. To do this we treat capillary wave 

2 See Stell et  aL (13) for a comprehens ive  review of dielectr ic  fluids. Fo r  a brief review see 

Hcye.~ 141 
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amplitudes as if they were small. Within this approximation or assumption 
we find that leading contributions beyond the van der Waals theory are in 
quantitative agreement with capillary wave theory. 

In Section 2 we establish the correlation function along an interface 
according to the capillary wave picture, regarding the wave amplitudes as 
small. In Section 3 the van der Waals theory for interfaces is considered. In 
Section 4 we derive the direct correlation function. In Section 5 we evaluate 
the pair correlation function and find its asymptotic form, which can be 
interpreted as capillary waves in agreement with the result of Section 2. We 
perform the derivations in Section5 in a way similar to the one 
Wertheim (7) employed to derive his general result for the pair correlation 
function along an interface. The agreement with capillary waves hinges 
upon the use of a general formula for the surface tension in terms of the 
direct correlation function. (17) In Section 6 we show explicitly that the van 
der Waals theory gives a surface tension in agreement with the general 
formula, i.e., we compute the excess to the bulk pressure with the planar 
equilibrium interface present. (18) The general formula, however, is based 
upon curving the interface and then evaluating the change in pressure or 
free energy accompanying this operation. Thus we show that the direct 
correlation function derived in Section 4 also is consistent with the van der 
Waals theory with respect to surface tension. In Section 7 we consider the 
Sullivan model, which has certain simplifying features./j8'~91 There we find 
that the correlation function is essentially the Green's function of a one 
dimensional Schr6dinger equation with a potential bump at the interface. 
In Section 8 we evaluate the leading 7-ordered correction to the average 
density profile. The result of this matches with capillary wave theory when 
the amplitudes are regarded as small. 

2. C A P I L L A R Y  W A V E  P I C T U R E  

The motion of molecules at the surface between two phases will create 
fluctuations in it. From a macroscopic viewpoint these fluctuations may be 
described by capillary waves along the surface. These waves may be 
regarded as independent harmonic oscillators. For  harmonic oscillators the 
equipartition principle holds. This means that at equilibrium each degree of 
freedom contributes the energy �89 on average (kB is Boltzmann's 
constant and T is temperature). 

The forces determining the potential energy of a surface are the surface 
tension 7 and gravity g (if the latter is present). Let the surface be a square 
with sides of length L along the y and z axes. A standing wave is described 
by the amplitude (in the x direction) 

A = a sin ky y sin kzz (1) 
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For a square surface whose side length is L the allowed values ky and kz 
will be 2~n/L, where n is an integer. 

Consider first gravity. Let M be the mass of each molecule, and Ap the 
difference in number density for the coexisting two phases. The potential 
energy per unit area of a liquid column of height A is then �89 MgA 2. 
Integration over the surface gives the total potential energy from gravity 

Wg = ~(Ap) Mga2L 2 (2) 

A capillary wave increases the area of the surface, and due to surface 
tension this contributes to the potential energy. The relative increase of the 
surface is 

[OA\  2 [c?A\271/2 1 F['aA'~ 2 /'63A'~27 

Differentiating (1) and integrating over the surface, one finds the increase 
in surface area to be ~k2a2L 2. The potential energy due to surface tension 
is thus 

with 

W s = �89 2 (4) 

As mentioned 
equilibrium should be �89 T. Adding (2) and (4), this means 

k 2 n  2 -k . , ,+k~ 

above, the resulting average potential energy at 

�89 B T = ~(k2y + Ap Mg) a2L 2 (5) 

o r  

with 

�88 2 = 1/(/~)k 2 -~ figM Ap) (6) 

= 1/kB T (7) 

The fluctuating capillary waves yield long-range correlations along the fluid 
interface. We want to compute the contribution from each mode. In accor- 
dance with the van der Waals type picture of a fluid interface, we assume 
that there will be a density profile p(x)  across it. Displacing the interface a 
small distance A will change the density at position x to 

p ( x - A ) = p ( x ) - A p ' ( x ) ,  p '(x)  =dp/dx  (8) 
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According to (6), a and thus A will decrease with increasing interface L, so 
for a single mode expansion (8) is valid. The pair distribution function is 
the average of the product of densities at two points. Subtracting the 
product of the average densities at these same two points, one obtains the 
pair correlation function h(12). The contribution to it from a single mode is 
thus 

plp2hk(12) = (p(xl -- AI) p (x2-  Az) ) - p ( x l )  p(x2) 

= (A~A2) p'(xl)p'(x2) (9) 

Here Ai (i = 1, 2) is the height of the interface at position (Yi, zi) as given 
by (1). 

Averaging keeping the relative distance in the yz plane fixed, it is clear 
that 

(A1A2) = ~a 2 cos kyy cos k~z (10) 

with 

Y= Y 2 -  Yl and z = z 2 - z ~  

Summing over the allowed values of ky and k~, one obtains h(12). For 
large L ~ oe the sum may be replaced by an integral. With allowed values 
2rcn/L of k v and kz, the sum may be replaced by (L/2~z) 2 ~ dk, where dk = 
dk,, dk:. This combined with (9) and (10) yields 

1 1 
p2h(12 ) = p'(x, ) p'(x2) ~ ) ~  f -~ a2L: cos ky y cos k:z dk P l (ll) 

According to (6), the a 2 is a symmetric function in k. Thus, the 
cos k v y cos k~z can be replaced with exp[_+ i(ky y + kzz)] in (11), and 
from this it is easy to see that the Fourier transform of h(12) will be 

p~p2~(12, k) = p'(xl) p'(x2) (12) 
~ k  2 + ~gM ~p 

when (6) is used to substitute for la2L2. 
It may be noted here that expression (11) is not quite the appropriate 

P 1 P2 h(12), since it assumes that linearization (8) holds also when adding 
the various Fourier components. To be strict, linearization requires that 
the resulting wave height is small compared to the width of the intrinsic 
density profile. As is well known, this does not hold in the small g ~ 0 limit 
and large separation along the surface for the points considered. In fact, the 
width of the resulting average density profile diverges when g ~ 0. A more 



302 Hoye 

appropriate computation of p lp2h(12) using the capillary wave picture 
may be found in the work by Bedeaux et al. (3) They consider a Gaussian 
model with a sharp intrinsic interface. However, the individual Fourier 
components as given by (12) are the ones of primary interest to us when 
we want to relate the van der Waals theory to the capillary wave picture. 
Our derivations correspond to linearization (8), which holds for the 
individual Fourier components. 

3. VAN DER W A A L S  THEORY FOR INTERFACES 

The van der Waals theory for interfaces is based upon a generalization 
of the van der Waals theory for the homogeneous phase using a mean field 
approach. (4/ It is assumed that one has a reference system whose equation 
of  state is considered known. The reference system is perturbed by an 
attractive potential that may be considered weak and long-ranged such 
that its influence upon the equation of state will be that of a mean field. 
This assumption can be extended to inhomogeneous systems where the 
density changes with position. Computing the reference system free energy, 
one then assumes that it will be, as for the homogeneous system, function 
of local density, neglecting the effect of density gradients, which are con- 
sidered small in this respect. However, the attractive interaction is more 
long-ranged. This has the effect that the mean field is not just a function of 
local density, but will depend upon the neighboring surroundings. This 
gives a nonlocal contribution to the free energy. Altogether the expression 
for Helmholtz free energy F within this theory will have the form 

-[3F/A=f lo(p(x))dx+�89 f p(x)x(x-x ')p(x ')dx '  (13) 

When considering interfaces the system is assumed homogeneous in the yz 
directions covering an area A. The Io(p) represents the contribution to 
F from the reference system, which, for instance, may be hard spheres. 
The latter term in (13) represents the mean field contribution from the 
surroundings of a given point. The attractive interaction we may call ~(r), 
assuming it to be spherically symmetric. Defining 

v(r) = -/3~(r) (14) 

we have 

Z(x) = f  v(r) dy dz (15) 

The density at equilibrium is determined via the global chemical 
potential gg, which is a constant throughout the system. An external field 
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~b(x) may be present. The local chemical potential gloc = g g -  ~b(x), which 
will vary through the system, can be derived as the functional derivative 
of (13), 

•(F/A) 
gloo- c~p(x) 

fig,oc(X)=flgg-fiO(x)=flgo(p(x))-f Z(x-x')p(x')dx' (16) 

with 

~go(p) = - e I o ( p ) / e p  

This integral equation with gg = const determines the density profile p(x) in 
the van der Waals theory. 

The theory outlined above may also be given a statistical mechanical 
justification. For the homogeneous case the van der Waals theory is well 
established in this respect/m) Formally in terms of the structure of graph 
expansions this may be extended to the inhomogeneous case. Such a 
situation was studied, e.g., by Hcye and Stell (2~ in their work on polar 
fluids in electric fields. By this generalization the graphs will be the same, 
but constant density p has to be replaced with nonconstant density p(x) at 
the vertices, and this usually complicates explicit computations severely. In 
view of an expansion where the inverse range of the attractive interaction 
O(r) is considered as the perturbing parameter, the interpretation of the 
two terms of Eq. (13) is clear. The first term is, as mentioned before, the 
contribution from the reference system with the approximation that the 
density is kept fixed when evaluating graphs by which the result for the 
homogeneous system can be used, i.e., one uses a local density p(x) assum- 
ing that the range of the graphs is small. The other term in (13) will be 
contribution from the graph with two vertices p(x) and p(x') connected by 
a potential bond. The potential bond is considered to be of longe range, by 
which variations in p(x) during integration have to be taken into account. 
By an expansion in the inverse range of interaction, Eq. (13) thus 
represents the leading order contribution, other contributions being of 
higher order. (m) 

4. T H E  D I R E C T  C O R R E L A T I O N  F U N C T I O N  

The direct correlation function of a system may be obtained by 
functional differentiation of Helmholtz free energy twice with respect to 
p(x). In the homogeneous case this is the same as the usual fluctuation 

822/49/1-2-20 
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theorem that relates the compressibility of a system to the direct 
correlation function or the pair correlation function. With 

1 
C(0) = ~ 6(xl - x2) - 8(12, 0) (17) 

p l , ) c  1 ,/ 

C(O)- 82(-flF/A) 
6p(xl)6p(x2) (18) 

where c(12) is the direct correlation function integrated over the relative y 
and z coordinates. By use of (16), keeping in mind that gg is fixed, we get 

~ ( o )  - 
6(-flO(x~)) 1 

~p(x) ~(p(xl)) - - 6 ( x l - x 2 ) - Z ( x l - x 2 )  (19) 

with 

1 8(flgo(p) ) 
#(p) ap (20) 

Within the approximation used in (13) for the reference system, the first 
term on the right-hand side of (19) is nothing but the C(0) for this latter 
system. The pair correlation function, which again follows from this, will 
also be short range (here approximated by a 6-function). 

Now expression (19) has an additional contribution given by the 
attractive potential, and we want to evaluate its influence upon the pair 
correlation function at the interface. Then we need the details of the direct 
correlation function in the y and z directions. To get them, the free energy 
should be functionally differentiated twice with respect to p(r), the density, 
which may vary in all three dimensions. [-We have regarded Eqs. (13) and 
(16), which lead to (19), as one-dimensional functionals of p(x).] Such a 
differentiation yields 

1 
C(12, y, z ) - - -  6(r 1 - r 2 ) -  v(r ) (21) 

u(p(x,)) 

with v(r) given by (14). The direct correlation function c(12, y, z) is related 
to this by 

1 
C(12, y, z ) =  p--~)6(r 1 - r 2 ) -  c(12 , y, z) (22) 

with y = Yl - Y2 and z = z I - z:. Since expression (21) only depends upon 
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the relative distance along the yz plane, we can Fourier transform it to 
obtain 

1 
C'(12, k) = 6(xl - x2) - ~(x~ - x2, k) 

//(p(x1)) 
(23) 

where g(x, k) is the Fourier transform of v(r) with respect to y and z coor- 
dinates. Clearly, from (15) 

X(X) = ~(x, 0) (24) 

and thus in Eq. (19) 

C(0)= C(12,0) (25) 

5. PAIR CORRELATION FUNCTION 

The pair correlation function is related to the direct correlation 
function via the Ornstein Zernike (OZ) equation. Due to translational 
invariance the equation can be Fourier-transformed with respect to y and 
z, by which it reads 

f H(13, k) C(32, k) dx 3 =(~(x 1 -x2 )  (26) 

where 

kI(13, k)=p(xl)6(xl-x3)+p(xl)p(x3)'h(12, k) (27) 

Equation (26) may be regarded as a matrix equation with continuous 
indices x~, x3, and x2. In this respect the matrix R will be the inverse of C. 
Matrices may be inverted by evaluating eigenvalues and eigenvectors. The 
eigenvalues of D will clearly be the inverse of those of C, while the eigen- 
vectors will be in con: non, since H and C will be diagonal simultaneously. 
Here we are interested in the dominating behavior o f /4  for small k, since 
this, like (12), asymptotically yields the correlations for large distances 
along the surface. Thus, we look for the smallest eigenvalue of C. At first 
sight it may seem hard to obtain information about this. However, 
Eq. (16), which determines the density profile p(x), is the key to resolving 
this problem. This equation can be differentiated with respect to the 
position x to yield 

d ( - ~ ( x ) )  OBgo , , ,  
dx - -~p P t X ) - f  d[z(x-x')]p(x')dx'dx (28) 
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We may specialize to a gravity field, i.e., ~b(x) = gMx. Due to the symmetry 
of Z ( x - x ' )  in x and x', the differentiation with respect to x can be done 
with respect to x', and partial integration may be performed. In addition, 
using (20), we find 

(29) 

Comparing with (19) and (23), we see that this is nothing but 

- f lgM= f C(12, 0) p'(x2) dx2 (30) 

Specialized to g = 0, this yields 

0 = f C(12, 0) p'(x2) dx2 (31) 

This is the crucial equation, which tells us that p'(x) is an eigenvector 
of C(12, 0) with eigenvalue 0. This is also the lowest of the eigenvalues, 
since they are not allowed to be negative. Physically, this eigenvector or 
eigenfunction represents nothing but a translation of the interface in the 
x direction, which also is a solution of Eq. (16) for the profile p(x) when 
g = 0 .  

Now consider the situation with g and k small but different from zero. 
Their effect upon the smallest eigenvalue may then be handled with stan- 
dard perturbation methods. Equation (31) is the zeroth-order problem. 
With g =~ 0, Eq. (30) can be used to find the lowest eigenvalue for small g. 
Clearly, the operator C depends upon g, since the equilibrium profile does. 
However, for small g its eigenfunctions may be approximated by those for 
g = 0, since an error here to first order will show up only to second order in 
the eigenvalue. [Note that p'(x2) for g r 0 is not precisely an eigenfunction 
of (30).] The left-hand side of (30) may be expanded in eigenfunctions, 
yielding 

- - f l g M  = a p ' ( x l )  + ... (32) 

where 

i f  1 a=-~ (-flgM) p'(x)dx=~flgM Ap (33) 

with normalization 

N = f Ep'(x)]2 dx 
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As before, zip is the difference in density between the two coexisting phases. 
[-By expansion of a function f (x )=Zia i6 i (x )  the ai=yfq/idx/y 62 dxl 
since ~i are the eigenfunctions of a symmetric operator.] For small g, terms 
other than the one shown can be neglected. The reason is that the lowest 
eigenvalue for the operator in (30) will be close to zero ( ~ g ) ,  while the 
next lowest is expected to be of O(1). Equation (32) used in (30) yields 

l f l gM(A , )  , ' ( x , ) =  Y C(12, 0) p'(x2) dx2 (34) 

From this we conclude that the lowest eigenvalue of C(12, 0) is 

20 = ( l /N) ~gM Ap (35) 

Then we turn to the situation with k r 0. The change in ~ of O(k 2) for 
small k may be regarded as a perturbation, which from (23) is found to be 
(X=X,--X2) 

ZIf(12) = ~(12, k) - C(12, 0) = f(x, 0) - ~(x, k) (36) 

The change in the lowest eigenvalue can be found by standard first-order 
perturbation theory. Adding this to (35), we find that the lowest eigenvalue 
for small k becomes 

2 o = (fl/N)(gM ZIp + 7'k 2) (37) 

f ly '= (1/k 2) f p'(x~) d~5(12) p'(x2) dx, dx 2 (38) 

In the next part we will identify ~' with the surface tension 7 of the van der 
Waals theory. 

In accordance with Eq. (26), we want the inverse of C, which is /~. 
This is found by first transforming ~ to diagonal form, then taking the 
inverse, and so transforming back. The C is made diagonal by the matrix 
operator S, whose matrix elements are the normalized eigenfunctions 6,,(x) 
of C. Since ~ is symmetric, the inverse matrix S ~ will be the transpose of 
S. The elements of the diagonal matrix A = SCS- ~ will be 

A,,m = f ~ , (x , )  C(12, k) ~m(x2) dx, dx 2 

( .  

= .~.~ j ~,,,(x,) r dx,  = L . 6 . m  

The elements of its inverse are 

(A --'),m = (1/2m) 6~m 

(39) 

(40) 
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Backward transformation then yields H =  S XA-~S, 

1 
#(12, k)=~ ~ On(X1 ) I//n(X2) (41) 

This is formally the exact answer to the inversion problem. However, by 
our analytic approach explicit knowledge is restricted to n = 0. But this is 
sufficient for the purpose of obtaining the small g and k behavior, in which 
case the n = 0 term in (41) will be dominating. Using (37) for 2o and the 
corresponding eigenfunction of (31) for ~Po(X), we finally find 

/4(12, k)= P'(Xl) p'(x2) 
fly'k 2 + flgM Ap 

since the normalized function ~o(X) is 

(42) 

tPo(X ) = N l/2p'(x) (43) 

with N given below (33). 
Comparing with Eq. (12) via (27), one sees that Eq. (42) is nothing 

but the result of the capillary wave theory. With the identification y ' =  y 
that we will establish in the next part, they are fully identical. This thus 
makes a bridge connecting the van der waals theory and capillary wave 
theory. We see that capillary waves are built into the van der Waals theory 
via the correlation function that emerges when it is perturbed beyond the 
more obvious mean field result. It may be noted that the flat intrinsic 
profile p(x) of the van der Waals theory is kept unchanged in this 
approximation. 

6. SURFACE TENSION 

We want to identify the 7' in (42) with the surface tension y that 
follows from the van der Waals theory. First we reexpress (36) somewhat. 
Noting that v(r) has spherical symmetry and expanding for small k, we find 
[,~ = ( y ,  z ) ]  

A15(12) = f v(r)[ - i k a  + �89 2 + ... ] d~ 

[ k 2 2 2 2 _ ~ k  2 ( yy +kzz  ) v ( r ) d ~ - -  fy2v(r) da 1 (44) 
d 

which inserted in (38) yields 

f p'(xL) y2v(r) p'(x2) dy dz dx I dx 2 ~ ' =  (45) 
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Next we turn to the surface tension from the van der Waals theory. Adding 
flgg S p(x)  dx to the Helmholtz free energy (13), we get 

(2= I o ( p ( x ) ) d x +  p ( x ) z ( x - x ' ) p ( x ' ) d x ' d x  
--  L L oo 

p(x)  dx (46) 
+ f l g g  - L  

where we now specify the system to be of finite length, avoiding end effects 
by letting the x' integration be unrestricted. (The limit L ~  ~ is then 
considered.) The last term of (46) is fl/A times the Gibbs free energy. For 
the case with p ( x ) =  const the f2 is thus nothing but flp(2L), where p is the 
pressure. With an interface present the (2 will deviate from this, and the 
deviation is the surface tension times - f t .  Thus 

fly = flp(2L ) - Y2 (47) 

The bulk pressure is clearly determined by 

tip = I(p) + �89 2 + flggp (48) 

where the p is the density of either one of the two coexisting phases, i.e., 
p =p(_+oo), and a is the integrated strength of the attractive interaction 
multiplied by - ft. 

a = ~ Z(x) dx (49) 
d 

The functional (46) has its maximum when the profile p(x)  is the one at 
equilibrium determined by Eq.(16) with external potential ~b(x)=0. 
Likewise the functional (47) has its minimum for the same density profile, 
since p only acts as an added constant. Equation (47) may be rewritten as 

with 

where 

/~7=s-R (50) 

fL S =  K ( p ( x ) ) d x + � 8 9  [p (x ) ]Zdx  
- - o o  L 

R = �89 p(xl) z(x, - x 2 )  p(x2) dxl dx2 
L - - o o  

(51) 

K(p(x) )  = - I o ( p ( x ) )  - �89 2 - flggp(X) + tip (52) 
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Clearly, due to (48), 

K(p(+_L))~O when L ~ o o  (53) 

by which the limits of integration may be replaced by _+ oe. 
A variation of the density profile away from its equilibrium can be 

made by replacing x by x(1 +~). Due to the extremum, the 7 will be 
unchanged to first order in e. With x' =x(1 + e) in the integral for S, one 
sees that its value changes to 

S/(1 + e) + �89 + L) 2 + [p ( - -L) ]  2 } 

In the integral for R we make the expansion 

p(x(1 + e)) = p(x) + exp'(x) + ... 

So, to first order in e we find 

f l T = f l T + e ( - S + Q ) +  ... (54) 
where 

Q =�89 2+ [ p ( - L ) ]  2} 

�89 Ix1 p'(x,)z(xl- x2)p(x2) 
L oo 

"{- p(Xl)  X(Xl --X2) X2Pt(X2) ] dxl dx2 (55) 

Here we can perform partial integration to obtain [p(+L)--* p(_+ oo) as 
L--, oo] 

Q = 2 R + ~  c -oo P(x')x-~x [Z(X)] p(xz)dx~ dx2 (56) 

with x = x i - -  X2" 
From (54) one clearly must have S=Q.  This together with (56) 

inserted in (50) yields 

I f  L '~ d f i T = Q - R - 2  L f  ~p(Xl)-~x[XZ(X)]p(x2)dxldX2 (57) 

To go further, we use expression (15) for )~(x) to obtain 

~x [xz(x)] - Ox [xv(r)] dy dz 

0 2 
= -~  Ya--j-~ Ex~(r)] dydz (58) 
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where partial integration with respect to y is used. Now we come to the 
point where the spherical symmetry of v(r) is utilized. With ~v/Ox= 
(x/r) dr~dr, etc., one has 

y Ov/Ox = x c3v/Oy (59) 

We operate on this with y O/Ox to obtain 

2 6q2D Oq2 
y ~ =  y ~  (xv) (60) 

Noting that 82/8x2=-32/0x i  c3x2 ( x = x ~ - x 2 ) ,  we can substitute this 
result in (58) to yield 

d 02v(x) 
[xz(x)] = f y 2  Oxl c3xz dy dz (61) Z 

This latter result is finally inserted in Eq. (57) and partial integrations with 
respect to both x~ and xz are performed whereby the surface terms do not 
contribute. We finally obtain the result 

f17 = �89 p'(x,) yZv(r) p'(x2) dy dz dx I dx 2 (62) 

This is precisely expression (45). Accordingly, y ' =  7, which we wanted to 
show. It may be noted that our derivations have resulted into a more com- 
pact expression for 7 when compared with Eqs. (46) (48). Here we note 
that result (62) agrees with the more general result expressing 7 in terms of 
the direct correlation function and p'(x). (17) According to expressions (2t) 
and (22), the v(r) in (62) can be replaced by c(12, y, z), since 6(r 1 --r2) will 
not contribute. 

7. S U L L I V A N  M O D E L  

The Sullivan model is the van der Waals theory for the surface when 
the Z(x) is chosen to be of exponential form. (19) The nice feature of this 
special model is that the equations simplify; e.g., Eq. (16) for the 
equilibrium density profile can be transformed into a second-order differen- 
tial equation. Likewise here we will find that the evaluation of the pair 
correlation function can be done more explicitly. In fact the problem trans- 
forms into the one-dimensional Schr6dinger equation with a potential. 

The main problem is to evaluate t h e / ?  from Eq. (26) with C as given 
by (23). For this purpose we introduce a short-hand notation, rewriting 
(26) as 

H *  C = 1  (63) 
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where the asterisk denotes integration with respect to the common coor- 
dinate x3, and I is the unit matrix 6(x l -  x2). Furthermore, we introduce p 
and its inverse 1//~, which are the matrices #(p(xl))6(xl-x2) and 
[1/#(p(x~))] 6(Xl-x2), respectively. In this way Eq. (23) may be written 
a s  

= 1/# - ~ (64) 

Instead of /q we find it convenient to introduce the quantity R closely 
related t o / t  by 

# = / ~  +/~ �9 K ,  # (65) 

With R known, the evaluation o f / ~  will be trivial. Insertion of Eqs. (64) 
and (65) in (63) yields 

K =  ~ + ~ ,  # ,  K (66) 

When X(x) is an exponential, v(r) will be of Yukawa form 

Z2 e-;.~ 
v(r) = ~ - - -  (67) 

47z r 

Its Fourier transform with respect to r is ~z)~2/(ZZ+k2+k 2) (where 
k 2 _ 2 2 - k y  + k:). Transforming back to the x coordinate, we find 

0(x, k) - 2(22 + k2)~/2 exp[- - (22 + k2) m Ix[ ] (68) 

Z(x) = f(x, 0) = 172 exp( - 2  Ix[) (69) 

which is the exponential form used in the Sullivan model. We now note 
that 

( - V  2 + 22) v(r) = ~226(r) (70) 

o r  

( d2 ) 
-- dx~l-l-k2 q-22 ~ = ~ 2 2 I  (71) 

The operator acting on 0 in this equation may now be applied to Eq. (66). 
Use of (71) then yields the following equation for K: 

- dx---~+k~+,~ ~ - ~ ( p ( x ~ ) )  R(lZ, k)=a(x,-x~) (72) 
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This equation shows that K is nothing but the Green's function of a one- 
dimensional Schr6dinger equation. Like Eq. (41), the J~ may be expanded 
in the eigenfunctions of the operator on the left-hand side of Eq. (72). A 
simplifying feature in the present case is that these eigenfunctions are 
independent of k, as is obvious from Eq. (72). Again for small k only the 
smallest eigenvalue will be of interest. This is obviously clearer in the 
present case, since a one-dimensional quantum problem with attractive 
interaction has a bond ground state with eigenvalue separated from other 
eigenvalues (the # has a maximum at the interface). The eigenvalue and 
eigenfunction of this bond state we again find from Eq. (16) for the 
equilibrium profile. This leads to Eq. (29), which we now differentiate twice 
with respect to x. We notice that with use of (69) 

d 2 
d x  2 z(x-x')=22z(x-x')-~225(x-x') (73) 

In the resulting equation the Z ( x - x ' )  can again be eliminated by use of 
(29), and we obtain, after division by c~22, 

r'( ) 1 [_~52 - ~5x2+22 -#(p(x)) Oo(x)=l-flgM 

where 

(74) 

1 d f lgo(p(x) )  
tPo(X ) - - -  p ' ( x ) -  (75) 

~,(p(x))  dx  

using definition (20) for ~t. 
Clearly for g =  0 the 0o is an eigenfunction of (74) with eigenvalue 

2o = 0. For g #  0 the 0o(X) will be an approximate eigenfunction to (74) 
and expansions like (32) may again be performed. This time, instead of 
(35) we find the eigenvalue to be 

11 
20 = ~-~ flgM A(flgo) (76) 

where 

N =  i [0~ dx (77) 

and A(flgo) is the difference in flgo between the two phases. This difference 
is found by means of Eq. (16) to be [with g = 0 ,  or p(x) = const] 

~(~go) = c, J p  (78) 
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when X(X) is given by (69). So (76) turns into 

)~o = (l/N) flgM Ap (79) 

Clearly, the 0o(X) is also an eigenfunction of the operator on the left-hand 
side of (72). However, the eigenvalue changes to 

20 = (fi/N)(gM Ap + 7"k 2) (80) 

with 
S 1 ( Fd(flgo)]2 B<' -~22-a,~ 2J L~J dx (81) 

Thus altogether the small-k behavior of R will be like expression (42) 
for H, 

X(12, k )=  [0o(X,) Oo(X2)]/N.'lo (82) 

since it is the Green's function of Eq. (72). With tPo(X ) given by (75) and 2o 
given by (80), this is the same as result (42) for H provided y"= 7'. The 
and H are related by Eq. (65). 

Finally we show that 7"= 7'. Inserting Eqs. (75) and (77) and utilizing 
Eq. (29) (with g = 0), we find 

1 1 2 

= [ p'(xl) S(xl - x2) p ' ( x j  dxj dx2 (83) J 

where 

S(Xl -- X2)--~ f ~(Xl -- X2) ~(X2-- x) dx (84) 

With )~(x) given by the exponential form (69), one finds by integration 

S(x) = (cr + )v Ix]) e -~J.~l (85) 

Expression (83) with (85) inserted should be compared with expression 
(38) for 7'. The Ag(12) for the present case is then needed. Equations (36) 
and (68) give 

(1/k 2) Av(12) ~ S(x) (86) 

Thus, 7' and 7" as given by (38) and (83), respectively, are equal. 
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8. A V E R A G E  D E N S I T Y  

The capillary waves cause the average density to be different from the 
intrinsic density of the van der Waals theory. Here we want to evaluate the 
leading contribution to the density beyond the van der Waals theory and 
compare it with capillary wave theory. Such a computation has been per- 
formed by Sullivan, (9) whose result indicates some kind of consistency with 
capillary waves, but the connection is unclear. The root of the problem is 
the divergences (when g ~ 0 )  that wash out the average density profile. 
Theory is not quite able to cope with this problem. Capillary waves are 
harmonic oscillators of the positions of the intrinsic surface, but the 
oscillations of the local densities are not harmonic for large amplitudes, 
and the modes will couple. However, to avoid this difficulty, we may, as 
before, restrict ourselves to small amplitudes. Thus we may consider a large 
field of gravity to suppress oscillations or consider the contribution from 
single modes, i.e., we expand for small amplitudes. Capillary wave theory 
then yields for the average density 

( p ( x - A ) ) = p ( x ) - ( A )  p'(x)+�89 p"(x)+ ... (87) 

Clearly, (A)  =0. With A1 = A 2 = A  and y = z = 0 ,  Eq. (10) gives ( A 2 ) =  
�88 2 for a single mode. Adding the independent modes as in forming 
expression (11), we obtain, with a 2 given by (6), 

~ p ( x )  = ( p ( x -  A )  ) - p ( x )  = �89 (88) 

where 

1 dk 
J= I p <  + 

To prevent divergence this integral will need some large-k cutoff. 
Change in average density can also be evaluated by going one step 

beyond the van dcr Waals theory in y-ordering. Like Sullivan, ~ we will 
do so. The contribution to the free energy is then given by the sum of the 
ring graphs with potential bonds. (9~ In the notation of Section 6 this 
contribution AF to be added to expression (13) is given by 

fl AF 1 1 f 
- 7 =  2(2~)dTr l n ( 1 - # , ~ ) d k  (89) 

where the asterisk denotes matrix multiplication, and Tr means trace with 
respect to the x coordinate. [To be correct, a term -�89 p(x)dx should 
be included in (89), but it can be dropped, since it contributes only a 
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constant to the chemical potential and has no physical significance.] The 
change Ag in chemical potential to be added to the right-hand side of 
Eq. (16) is then 

6(AF/A) 
Ag (90) 

~p(x) 

or  

1 1 d#(p(x)) f /~(11, k) dk 
fl A g -  2 (2~) d dp(x) 

where, from (66), 

(91) 

K=  ~/(1 - ~ */t) (92) 

and K(ll,  k) means R with xl =x2 = x. From the small-k expression (82) 
we obtain 

1 
f K(ll ,  k) dk = [p'(x)/#] z J (93) 

(2~y' d 

when O0(x) and N2o are substituted by expressions (75) and (80), respec- 
tively. The J is the integral given by (88) (7"=7). (Note that these 
expressions are not restricted to the Sullivan model considered in 
Section 7.) Furthermore, with the help of Eq. (20) we have 

~2(flg0) ~ f l ' ~  18# 
(94) ~p2 -:  ~pp -- /~2 ~p 

Thus, insertion of Eqs. (93) and (94) in (91) yields 

1 82(flgo) [p,(x)]2 J (95) 
f lAg 2 8p - - - 5 - -  

We add this to (16) and expand around the intrinsic profile p(x) to obtain 

8(flgo) ( .  

0 = Ap(x) -- | Z(x - x') Ap(x') dx' + fl Ag (96) Op J 

which determines the change Ap(x) in average density. The solution of this 
integral equation does not seem obvious. However, in the spirit of the 
capillary wave result (88) and expression (95), we differentiate (16) twice to 
obtain 

0 = o2(flg~ 0p 2 [ p ' ( x ) ] 2 + ~ p " ( x ) - - f Z ( x - - x ' ) p ' ( x ' ) d x  ' (97) 
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when partial integration has been done in the last term. Clearly the first 
term of (97) is proportional to (95). Thus, comparing Eqs. (96) and (97), it 
follows that the solution Ap(x) must be proportional to p"(x), upon which 
these equations become identical. One finds the solution 

Ap(x) = �89 (98) 

This is precisely the capillary wave result (88). Thus, the leading 7-ordered 
perturbation of van der Waals theory corresponds to capillary waves when 
amplitudes are regarded as small. 
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